Home >> News: March 11th, 2009 >> Story
Satnews Daily
March 11th, 2009

ESO's Access To Hubble + VLT Offer Remote Galaxy Views In 3D


Astronomers have obtained exceptional 3D views of distant galaxies, seen when the Universe was half its current age, by combining the twin strengths of the NASA/ESA Hubble Space Telescope’s acute eye, and the capacity of ESO’s Very Large Telescope to probe the motions of gas in tiny objects, according to the latest information from the European Organisation for Astronomical Research in the Southern Hemisphere (ESO).

3D view of remote galaxies (ESO) By looking at this unique “history book” of our Universe, at an epoch when the Sun and the Earth did not yet exist, scientists hope to solve the puzzle of how galaxies formed in the remote past. For decades, distant galaxies that emitted their light six billion years ago were no more than small specks of light on the sky. With the launch of the Hubble Space Telescope in the early 1990s, astronomers were able to scrutinise the structure of distant galaxies in some detail for the first time. Under the superb skies of Paranal, the VLT’s FLAMES/GIRAFFE spectrograph (ESO 13/02) — which obtains simultaneous spectra from small areas of extended objects — can now also resolve the motions of the gas in these distant galaxies (ESO 10/06).

Measuring motion in 3 distant galaxies (ESO) The team has undertaken the Herculean task of reconstituting the history of about one hundred remote galaxies that have been observed with Hubble and GIRAFFE on the VLT. The first results are coming in and have already provided useful insights for three galaxies. In one galaxy, GIRAFFE revealed a region full of ionized gas, that is, hot gas composed of atoms that have been stripped of one or several electrons. This is normally due to the presence of very hot, young stars. However, even after staring at the region for more than 11 days, Hubble did not detect any stars! “Clearly this unusual galaxy has some hidden secrets,” says Mathieu Puech, lead author of one of the papers reporting this study. Comparisons with computer simulations suggest that the explanation lies in the collision of two very gas-rich spiral galaxies. The heat produced by the collision would ionize the gas, making it too hot for stars to form.

Another galaxy that the astronomers studied showed the opposite effect. There they discovered a bluish central region enshrouded in a reddish disc, almost completely hidden by dust. “The models indicate that gas and stars could be spiralling inwards rapidly,” says Hammer. This might be the first example of a disc rebuilt after a major merger (ESO 01/05). Finally, in a third galaxy, the astronomers identified a very unusual, extremely blue, elongated structure — a bar — composed of young, massive stars, rarely observed in nearby galaxies. Comparisons with computer simulations showed the astronomers that the properties of this object are well reproduced by a collision between two galaxies of unequal mass. The astronomers are now extending their analysis to the whole sample of galaxies observed. “The next step will then be to compare this with closer galaxies, and so, piece together a picture of the evolution of galaxies over the past six to eight billion years, that is, over half the age of the Universe,” concludes Hammer.

(Photo, top: A 3D view of remote galaxies. Photo, bottom: Measuring motion in 3 distant galaxies. Images created by ESO)