"The terrain on the far side of the moon is quite different from that of the near side of the moon," said David Paige, principal investigator for the Diviner instrument at UCLA. "The more we learn about the moon, the better scientific questions we can pose, and the better locations we can find for future lunar landings for robotic and human explorers. By getting a comprehensive view, NASA can tailor future landing sites to specific goals." The Diviner instrument is managed by NASA's Jet Propulsion Laboratory, Pasadena, California.
Based largely on the Mars Climate Sounder Instrument flying aboard the Mars Reconnaissance Orbiter, Diviner is a nine-channel radiometer that will make the first maps of the temperature on the surface of the lunar polar regions. The instrument will have the capability of measuring very cold temperatures, and will, for the first time, characterize the entire thermal environment of the moon. Diviner will also produce a map showing the composition of the moon, and a map showing how rocky the moon is. In addition to creating a comprehensive atlas of the moon's features with detailed information about surface and subsurface temperatures, Diviner will identify cold traps and potential ice deposits, as well as landing hazards such as rough terrain or rocks to be avoided by future manned missions to the moon.
The Lunar Reconnaissance Orbiter is the first mission in NASA's Vision for Space Exploration program, a plan to return to the moon and then to travel to Mars and beyond. The mission will gather crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions.

